blas.f Source File

L-BFGS-B submodule



Contents

Source Code


Source Code

!! L-BFGS-B submodule
c                                                                                      
c  L-BFGS-B is released under the “New BSD License” (aka “Modified BSD License”        
c  or “3-clause license”)                                                              
c  Please read attached file License.txt                                               
c                                        

      double precision function dnrm2(n,x,incx)
      integer n,incx
      double precision x(n)
c     **********
c
c     Function dnrm2
c
!!     Given a vector x of length n, this function calculates the Euclidean norm of x with stride incx.
c
c     The function statement is
c
c       double precision function dnrm2(n,x,incx)
c
c     where
c
c       n is a positive integer input variable.
c
c       x is an input array of length n.
c
c       incx is a positive integer variable that specifies the 
c         stride of the vector.
c
c     Subprograms called
c
c       FORTRAN-supplied ... abs, max, sqrt
c
c     MINPACK-2 Project. February 1991.
c     Argonne National Laboratory.
c     Brett M. Averick.
c
c     **********
      integer i
      double precision scale

      dnrm2 = 0.0d0
      scale = 0.0d0

      do 10 i = 1, n, incx
         scale = max(scale, abs(x(i)))
   10 continue

      if (scale .eq. 0.0d0) return

      do 20 i = 1, n, incx
         dnrm2 = dnrm2 + (x(i)/scale)**2
   20 continue

      dnrm2 = scale*sqrt(dnrm2)

 
      return

      end
      
c====================== The end of dnrm2 ===============================

      subroutine daxpy(n,da,dx,incx,dy,incy)
         !! constant times a vector plus a vector.
         !! uses unrolled loops for increments equal to one.
         !!     jack dongarra, linpack, 3/11/78.
c     
      double precision dx(*),dy(*),da
      integer i,incx,incy,ix,iy,m,mp1,n
c
      if(n.le.0)return
      if (da .eq. 0.0d0) return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dy(iy) = dy(iy) + da*dx(ix)
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,4)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dy(i) = dy(i) + da*dx(i)
   30 continue
      if( n .lt. 4 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,4
        dy(i) = dy(i) + da*dx(i)
        dy(i + 1) = dy(i + 1) + da*dx(i + 1)
        dy(i + 2) = dy(i + 2) + da*dx(i + 2)
        dy(i + 3) = dy(i + 3) + da*dx(i + 3)
   50 continue
      return
      end
      
c====================== The end of daxpy ===============================

      subroutine dcopy(n,dx,incx,dy,incy)
c
c     copies a vector, x, to a vector, y.
c     uses unrolled loops for increments equal to one.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(*),dy(*)
      integer i,incx,incy,ix,iy,m,mp1,n
c
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dy(iy) = dx(ix)
        ix = ix + incx
        iy = iy + incy
   10 continue
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,7)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dy(i) = dx(i)
   30 continue
      if( n .lt. 7 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,7
        dy(i) = dx(i)
        dy(i + 1) = dx(i + 1)
        dy(i + 2) = dx(i + 2)
        dy(i + 3) = dx(i + 3)
        dy(i + 4) = dx(i + 4)
        dy(i + 5) = dx(i + 5)
        dy(i + 6) = dx(i + 6)
   50 continue
      return
      end
      
c====================== The end of dcopy ===============================

      double precision function ddot(n,dx,incx,dy,incy)
c
c     forms the dot product of two vectors.
c     uses unrolled loops for increments equal to one.
c     jack dongarra, linpack, 3/11/78.
c
      double precision dx(*),dy(*),dtemp
      integer i,incx,incy,ix,iy,m,mp1,n
c
      ddot = 0.0d0
      dtemp = 0.0d0
      if(n.le.0)return
      if(incx.eq.1.and.incy.eq.1)go to 20
c
c        code for unequal increments or equal increments
c          not equal to 1
c
      ix = 1
      iy = 1
      if(incx.lt.0)ix = (-n+1)*incx + 1
      if(incy.lt.0)iy = (-n+1)*incy + 1
      do 10 i = 1,n
        dtemp = dtemp + dx(ix)*dy(iy)
        ix = ix + incx
        iy = iy + incy
   10 continue
      ddot = dtemp
      return
c
c        code for both increments equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,5)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dtemp = dtemp + dx(i)*dy(i)
   30 continue
      if( n .lt. 5 ) go to 60
   40 mp1 = m + 1
      do 50 i = mp1,n,5
        dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
     *   dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
   50 continue
   60 ddot = dtemp
      return
      end
      
c====================== The end of ddot ================================

      subroutine  dscal(n,da,dx,incx)
c
c     scales a vector by a constant.
c     uses unrolled loops for increment equal to one.
c     jack dongarra, linpack, 3/11/78.
c     modified 3/93 to return if incx .le. 0.
c
      double precision da,dx(*)
      integer i,incx,m,mp1,n,nincx
c
      if( n.le.0 .or. incx.le.0 )return
      if(incx.eq.1)go to 20
c
c        code for increment not equal to 1
c
      nincx = n*incx
      do 10 i = 1,nincx,incx
        dx(i) = da*dx(i)
   10 continue
      return
c
c        code for increment equal to 1
c
c
c        clean-up loop
c
   20 m = mod(n,5)
      if( m .eq. 0 ) go to 40
      do 30 i = 1,m
        dx(i) = da*dx(i)
   30 continue
      if( n .lt. 5 ) return
   40 mp1 = m + 1
      do 50 i = mp1,n,5
        dx(i) = da*dx(i)
        dx(i + 1) = da*dx(i + 1)
        dx(i + 2) = da*dx(i + 2)
        dx(i + 3) = da*dx(i + 3)
        dx(i + 4) = da*dx(i + 4)
   50 continue
      return
      end
      
c====================== The end of dscal ===============================